NEOLITHIC ALEPOTRYPA CAVE IN THE MANI, GREECE

In honor of George Papathanassopoulos

Edited by

A. Papathanasiou, W. A. Parkinson, D. J. Pullen, M. L. Galaty, and P. Karkanas
Contents

<table>
<thead>
<tr>
<th>List of illustrations</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of colour plates</td>
<td>xiii</td>
</tr>
<tr>
<td>List of contributors</td>
<td>xiv</td>
</tr>
<tr>
<td>Memories of Alepotrypa Cave, Diros (George Papathanassopoulos)</td>
<td>xvi</td>
</tr>
</tbody>
</table>

1. Introduction
Anastasia Papathanasiou
1

2. Alepotrypa Cave: the site description and its cultural and chronological range
Anastasia Papathanasiou
10

3. Stratigraphy and site formation processes of Alepotrypa Cave
Panagiotis Karkanas
24

4. The stratigraphic and pottery sequence of Trench B1 at Alepotrypa Cave: a first approach to the investigation of ceramic and chronological associations
Barbara Katsipanou-Margeli
33

5. When do the dead become dead? Mortuary projects from Ossuaries I and II, Alepotrypa Cave
Stella Katsarou
91

6. Patterns of pottery consumption, destruction and deposition at Alepotrypa Cave: the case of Chamber Z during the Neolithic period
Katerina Psimogiannou
127

7. Pithoi with relief decoration from Alepotrypa Cave
George Valvis
158

8. The Alepotrypa Cave pottery assemblage: a ceramic petrology approach
Areti Pentedeka
163

9. The chipped stone industries of Alepotrypa Cave: a general presentation
Georgia Kourtessi-Philippakis
179

10. Macrolithics: ordinary things in an extraordinary place
Anna Stroulia
201

11. Patterns of exploitation and exchange: preliminary compositional results of the obsidian assemblage from Alepotrypa Cave
Danielle J. Riebe
242

12. Neolithic bone and antler artefacts from Alepotrypa Cave
Georgia Stratouli
253

13. The people of Alepotrypa
Anastasia Papathanasiou
260

14. The macrofaunal assemblage of Alepotrypa Cave
Angelos Hadjikoumis
272
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Radiogenic strontium isotope results from the burials of Alepotrypa Cave</td>
<td>Julia I. Giblin</td>
<td>306</td>
</tr>
<tr>
<td>16</td>
<td>The plant remains from Alepotrypa Cave: use, discard and structured deposition</td>
<td>Evi Margaritis</td>
<td>316</td>
</tr>
<tr>
<td>17</td>
<td>The exploitation of marine animal resources at Alepotrypa Cave: harvesting strategies, management and uses</td>
<td>Tatiana Theodoropoulou</td>
<td>327</td>
</tr>
<tr>
<td>18</td>
<td>Phytolith analysis from the sediments of Alepotrypa Cave</td>
<td>Georgia Tsartsidou</td>
<td>360</td>
</tr>
<tr>
<td>19</td>
<td>Wood charcoal analysis from the sediments of Alepotrypa Cave</td>
<td>Maria Ntinou</td>
<td>373</td>
</tr>
<tr>
<td>20</td>
<td>The microfauna from Alepotrypa Cave</td>
<td>Katerina Papayianni and Thomas Cucchi</td>
<td>391</td>
</tr>
<tr>
<td>21</td>
<td>Speleothems from Alepotrypa Cave: towards climate reconstruction</td>
<td>Meighan Boyd and Kathrin Holmgren</td>
<td>400</td>
</tr>
<tr>
<td>23</td>
<td>An integrated assessment of Alepotrypa Cave</td>
<td>Anastasia Papathanasiou</td>
<td>426</td>
</tr>
</tbody>
</table>
List of illustrations

Figure 0.1. Alepotrypa Cave floorplan and archaeological loci. Important note: TH (from Thesi) is the equivalent of Θ (Θέση = locus). Th can also be substituted for the chamber designation letter (i.e. Th/20 is the same as Θ/20 or Z/20). Certain loci may also bear specific names. Furthermore, Niche 31 is the same as LA1 or Th/31 or Θ/31.

Figure 2.1. Alepotrypa on the map of Greece.
Figure 2.2. Aerial photo of Diros Bay with Alepotrypa Cave floor plan superimposed.
Figure 2.3. First report on the discovery and the name of Alepotrypa Cave (cave number 923) by the Greek Speleological Society.
Figure 2.4. Page of G. Papathanassopoulos’s handwritten note book, on his first visit to Alepotrypa Cave.
Figure 2.5. Page of G. Papathanassopoulos’s handwritten note book, at the beginning of investigation of Alepotrypa Cave.
Figure 2.6. Map of the west half of Alepotrypa Cave, with all the numbered activity areas (TH/Θ).
Figure 2.7. Map of the east half of Alepotrypa Cave, with all the numbered activity areas (TH/Θ).
Figure 2.8. Alepotrypa Cave, Chamber A, looking west to the present entrance.
Figure 2.9. Alepotrypa Cave, Chamber A, looking east to Chamber B.
Figure 2.10. First map of Alepotrypa Cave (cave number 923) by the Greek Speleological Society.
Figure 2.11. Plan view of the Alepotrypa Cave, showing the different chambers.
Figure 2.12. Plan view of the front chambers.
Figure 2.13. Plan view of the back chambers, showing the sampled areas of Chamber Z.

Figure 4.1. Plan of the Alepotrypa Cave with Chambers A–Z and the individual loci of research.
Figure 4.2. Interior of Chamber B.
Figure 4.3. Plan of the anterior section of Alepotrypa Cave closest to the entrance.
Figure 4.4. Stratigraphy I: The nine layers of Trench B1 (S1–S9) as recorded in 1971.
Figure 4.5. Burial A.
Figure 4.6. Burial A.
Figure 4.7. Burial A.
Figure 4.8. Stratum 9. Circular structure in the NE corner with paved bottom.
Figure 4.9. Stratum S9. The visible part of the structure on the south side.
Figure 4.10. Burial B, SE corner.
Figure 4.11. Burial B.
Figure 4.12. Burial B.
Figure 4.13. Burial C.
Figure 4.14. Burial C.
Figure 4.15–19. Black Burnished ware.
Figure 4.20. Dot incised decoration.
Figure 4.21–24. Rhyton sherds.
Figure 4.25. Sherd from multi-legged vessel (Gr51).
Figure 4.26–29. Grey Burnished ware.
Figure 4.30–35. Matt Painted ware.
Figure 4.36. Polychrome Ware (Group I–II).
Figure 4.37. Rippled ware.
Figure 4.38–42. Pithoid vessels.
Figure 4.43–56. Ceramic handles and lugs.
Figure 4.57. ‘Cheese pots’.
Figure 4.58. Rolled-rim bowls.
Figure 5.1. Ossuary II. Plan of locations Θ and detail of grid in Θ 9.
Figure 5.2. Ossuary II. Plan of locations Θ and detail of grid in Θ 9.
Figure 5.3. Ossuary II. Plain monochrome ware.
Figure 5.4. Ossuary II. Plain basins and ‘cheese-pots’.
Figure 5.5. Ossuary II. Plain basins and ‘cheese-pots’.
Figure 5.6. Ossuary II. Polished monochrome ware.
List of illustrations

Figure 5.7. Ossuary II. Polished monochrome ware
Figure 5.8. Ossuary II. Jars with banded decoration
Figure 5.9. Ossuary II. Jars with banded decoration
Figure 5.10. Ossuary II. Dark polished/burnished monochrome ware
Figure 6.1. a) Niche 31 during excavation; b) detail of interior
Figure 6.2. Niche 22 before (a) and after (b) excavation
Figure 6.3. Niche 22a after excavation
Figure 6.4. Θ 20
Figure 6.5–9. Pottery from Niche 31
Figure 6.10–12. Pottery from Niche Z22
Figure 6.13. EN pottery from Chamber Z
Figure 6.14. Θ 24
Figure 6.15. FN ‘fluted bowls’ from Θ 24
Figure 6.16. MN Collar jars in lime ware
Figure 6.17. MN Urfinnus vessels
Figure 6.18. Black Burnished pottery
Figure 6.19. Grey Burnished pottery
Figure 6.20. Matt Painted pottery
Figure 6.21. ‘Cheese-pot’
Figure 6.22. Pottery in coarse and med/coarse ware found throughout Chamber Z
Figure 6.23. Part of a low, collar jar showing affinities with pottery from the Cyclades
Figure 7.1–8. Pithoid vessels
Figure 9.1. Map of Greece with the sites mentioned in the text.
Figure 9.2. Obsidian cores
Figure 9.3. Obsidian core tablets
Figure 9.4–14. Obsidian tools
Figure 9.15. Pieces with gloss
Figure 9.16. White patinated pieces
Figure 10.1–6. Schist passive abrasive tools
Figure 10.7–9. Schist cavity tools
Figure 10.10. Schist groove tool
Figure 10.11–17. Metavolcanic cutting edge tools
Figure 10.18–19. Metavolcanic tool used percussively at the ends
Figure 10.20. Small conical metavolcanic tool
Figure 10.21–29. Limestone/marble a posteriori tools
Figure 10.30. Marble perforated sphere
Figure 10.31. Partially drilled marble specimen
Figure 10.32–3. N(non-a posteriori) limestone/marble miscellanea
Figure 10.34–35. Used hematite lumps
Figure 11.1. Map of sites mentioned in the text; inset map of the two Melian quarries of Sta Nychia and Demenegaki
Figure 11.2. Bivariate plot of log base-10 concentrations of principal components 1 and 2
Figure 12.1–7. Pointed bone tools
Figure 12.8–12. Bone needles
Figure 12.13. Edged bone tool
Figure 12.14. Antler basal part, with shaft hole and socket
Figure 12.15. Cribr a orbitalia
Figure 12.16. Healed depressed cranial fracture
Figure 12.17. Metopism
Figure 12.18. Distribution of burial types in Alepotrypa Cave
Figure 12.19. Single primary burial in Trench B1
Figure 12.20. Multiple burial in Trench B1
Figure 12.21. Ossuary II
Figure 12.22. Distribution of the skeletal elements of limbs
Figure 12.23. Distribution of the skeletal elements of hands and feet
Figure 12.24. Relative prevalence of the elements of a complete human skeleton in Ossuary II
Figure 12.25. Relative prevalence of skeletal elements in Ossuary I
Figure 12.26. Relative prevalence of skeletal elements in the North Sector of Chamber B
Figure 12.27. Relative prevalence of skeletal elements in Chamber Z
Figure 12.28. Relative prevalence of skeletal elements for the entire osteological assemblage of Alepotrypa Cave
Figure 12.29. Relative prevalence of skeletal elements for the entire osteological assemblage of Franchthi Cave
Figure 13.1. Mammalian species composition from Chamber A
Figure 13.2. Mammalian species composition from Early Neolithic levels of Chamber B
Figure 13.3. Mammalian species composition from Late Neolithic levels of Chamber B
Figure 13.4. Mammalian species composition from Final Neolithic levels of Chamber B
Figure 13.5. Mammalian species composition from Late/Final Neolithic levels of Chamber B
Figure 13.6. Mammalian species composition from Final Neolithic levels of Chamber D
Figure 13.7. Mammalian species composition from Early/Final Neolithic deposits in Chamber Z
Figure 13.8. Mortality data for sheep and goat (combined) based on epiphyseal fusion
Figure 13.9. Mortality data for sheep and goat based on dental eruption and wear, Early Neolithic period
Figure 13.10. Mortality data for sheep and goat based on dental eruption and wear, Late-Final Neolithic period
List of illustrations

Figure 14.11. Mortality data for pig based on epiphyseal fusion
Figure 14.12. Mortality data for pig based on dental eruption and wear
Figure 14.13. Mortality data for cattle based on epiphyseal fusion, Late-Final Neolithic period
Figure 14.14. Incidence of taphonomic processes on mammal remains
Figure 14.15. Incidence of butchery on mammal remains
Figure 14.16. Frequencies of different types of butchery marks on mammal remains
Figure 14.17. Scatterplot with measurements of pig distal humeri from Alepotrypa and Early Helladic Koropi Medical Centre
Figure 14.18. Scatterplot with measurements of dog distal humeri from Alepotrypa and Early Helladic Koropi Medical Centre. All plotted specimens are fully fused
Figure 15.1. Map of Alepotrypa Cave, showing locations where human and animal skeletal material has been recovered
Figure 15.2. Radiogenic Sr isotope data from Alepotrypa Cave compared to previously published regional data from fauna and hominid bone
Figure 15.3. Radiogenic Sr isotope data for humans and domesticated fauna from Alepotrypa Cave. Samples are organized by region of the cave
Figure 15.4. Radiogenic Sr isotope data for humans from Alepotrypa Cave
Figure 15.5. Radiogenic Sr isotope data for humans and fauna from Alepotrypa Cave
Figure 15.6. Radiogenic Sr isotope data for humans and fauna from Alepotrypa Cave
Figure 15.7. Radiogenic Sr isotope data for humans from Alepotrypa Cave
Figure 15.8. Richness, equitability and diversity indexes of fish remains (NISPi) in the Late and Final Neolithic
Figure 15.9. Absolute numbers of remains of fish families (NISP) in the Late and Final Neolithic
Figure 15.10. Frequencies of dominant fish families (NISPi) in the Late and Final Neolithic
Figure 15.11. Frequencies of exploited marine depths and substrates for the collection of invertebrate resources (based on MNI counts) in the Late and Final Neolithic
Figure 15.12. Frequencies of exploited marine depths and substrates for the collection of fish resources (based on NISPi counts) in the Late and Final Neolithic
Figure 15.13. Modern common size range and maximum observed lengths of common fish species at Alepotrypa
Figure 15.14. Estimated sizes (length) of caught tunas based on measurements of vertebrae
Figure 15.15. Estimated season of capture of fish in the Late and Final Neolithic, based on growth annuli from vertebrae (all species)
Figure 15.16. Main fragmentation patterns observed on topshells at Alepotrypa (NISP)
Figure 15.17. Frequencies of remains of edible invertebrate and fish at different areas of the cave (%NISP)
Figure 15.18. Frequencies of shell families in the different areas of the cave (NISP)
Figure 15.19. Frequencies of fish families in the different areas of the cave (NISP)
Figure 15.20. Frequencies of seasonal fish landings in the different areas of the cave
Figure 15.21. Frequencies of different fish anatomical elements in the different areas of the cave
Figure 15.22. Numbers of shells (MNI) and number of families in the different phases of the Neolithic at Alepotrypa
Figure 15.23. Richness, equitability and diversity indexes of shells (MNI) in the Late and Final Neolithic
Figure 15.24. Frequencies of dominant invertebrate families (MNI) in the Late and Final Neolithic
Figure 15.25. Types of modified shells in the different Neolithic phases at Alepotrypa
Figure 15.26. Types of modified shells found in the different areas of the cave
Figure 15.27. Examples of beads/pendants from Neolithic Alepotrypa
Figure 15.28. Examples of pendants or possible pendants from Neolithic Alepotrypa
Figure 15.29. Examples of annuli from Neolithic Alepotrypa
Figure 15.30. Examples of other objects made of shell from Neolithic Alepotrypa
Figure 18.1	Organic component of the sediments in modern dung samples from GT reference collection
Figure 18.2	Frequencies of organic component in sediment, Anterior of the cave
Figure 18.3	Carbonate component of the sediments
Figure 18.4	Amounts of phytoliths per gram sediment
Figure 18.5	Frequencies of wood phytoliths
Figure 18.6	Frequencies of phytoliths that show signs of melting probably from strong fire
Figure 18.7	Frequencies of phytoliths assigned to the leaves of dicotyledonous plants (trees and shrubs)
Figure 18.8	Frequencies of reed phytoliths
Figure 18.9	Frequencies of Pooidae grass phytoliths
Figure 18.10	Frequencies of cereal phytoliths
Figure 18.11	Frequencies of wild grass phytoliths
Figure 18.12	Frequencies of stem and husk grass phytoliths
Figure 18.13	Amounts of phytoliths per gram sediment, Interior of the cave
Figure 18.14	Frequencies of Chloridoideae grass phytoliths
Figure 18.15	Frequencies of phytoliths assigned to sedges (Cyperaceae and Juncaceae)
Figure 18.16	Frequencies of phytoliths assigned to fruits of dicotyledonous plants (Celtis sp. and Lithospermum arvense)
Figure 19.1–2	Anatomy sections of some of the identified taxa
Figure 19.3	Wood charcoal diagram showing changes in the frequency of plant taxa throughout the Neolithic sequence of Alepotrypa Cave
Figure 19.4	Bar-chart showing the relative frequency of taxa in the composition of each burning episode in Θ 14, from bottom to top
Figure 19.5	Bar-chart showing the relative frequency of taxa in the composition of the upper surface in comparison with the hearth-and-floor complex and the basal hearth-and-dung layer in Θ 14
Figure 19.6	Graphic representation of the percentage contribution of each taxon in the composition of the assemblages of different locations in the interior Chamber Z and Chamber of Lakes
Figure 19.7	Frequency of fragments with strong curvature for the most abundant taxa in the interior chambers
Figure 19.8	Typical wood charcoal fragments in LAN location
Figure 19.9	Consolidated pieces of the thick charred matter observed in location Z22
Figure 21.1	Map with locations of sample sites
Figure 21.2	Photo showing thick section scan of A1
Figure 21.3	Photo showing thick section of A2
Figure 21.4	Photo showing thick section of A6
Figure 21.5	Photo showing thick section of EH1
Figure 21.6	Photo showing bone sample surrounded by calcite crust
Figure 21.7	Photo of bone sample from Chamber B, area 7
Figure 21.8	Map of study region showing tracts walked each year
Figure 21.9	Map of study region showing sites
Figure 22.1	Map of study region showing tracts and ceramic densities
Figure 22.2	Example of tract data recording page from tablet
Figure 22.3	Example of gridded collection data page from tablet
Figure 22.4	Map of the study region showing research zones
Figure 22.5	Map of the study region showing toponyms
Figure 22.6	Density of ceramics from intensive collection at Site 2
Figure 22.7	Density of ceramics from intensive collection at Site 3
Figure 22.8	Density of ceramics from intensive collection at Sites 4 and 6
Figure 22.9	Density of ceramics from intensive collection at Site 5
Figure 22.10	Density of ceramics from intensive collection at Site 7
List of tables

Table 2.1. Summary of radiocarbon samples and dates from Alepotrypa Cave
Table 2.2. Tentative cultural sequence from Trench B1 of Alepotrypa Cave
Table 5.1. Ossuary I. Number of ceramic fragments per specific spot and year of fieldwork
Table 5.2. Ossuary I. Number of ceramic fragments per stratigraphical context and date
Table 5.3. Ossuary I. Number of pottery fragments per date and vessel shape
Table 5.4. Number of the Ossuary II pottery fragments per section and year of research
Table 5.5. Number of pottery fragments per section and surface group
Table 5.6. Number of pottery fragments per class and vessel shape
Table 5.7. Number of pottery fragments per surface colour and surface group
Table 5.8. Number of slipped and worn-away interior surfaces per general group
Table 7.1. Distribution of pithos sherds in Alepotrypa Cave
Table 8.1. Summary table of the raw material samples from the vicinity of Alepotrypa Cave
Table 8.2. Petrographic descriptions of the ACGS1 and ACGS2 experimental briquettes
Table 9.1. Quantitative distribution of the lithic artefacts in Alepotrypa Cave
Table 9.2. Distribution of the lithic artefacts by raw materials
Table 9.3. Distribution of the raw materials used for tools by chambers and loci
Table 9.4. Distribution of the tool types by chambers and loci
Table 9.5. Distribution of the tool types by blanks
Table 10.1. Schist passive open abrasive tools
Table 10.2. Schist active open passive tools
Table 10.3. Uncertain schist open abrasive tools
Table 10.4. Schist cavity and groove tools
Table 10.5. Schist miscellanea
Table 10.6. Metavolcanic tools used in an active linear mode with the end/s or cutting edge tools
Table 10.7. Metavolcanic tools used in an active diffused percussive mode with the ends
Table 10.8. Small metavolcanics conical tools with a variety of active use wear
Table 10.9. Metavolcanic miscellanea
Table 10.10. Limestone/marble a posteriori tools with exclusive abrasive wear
Table 10.11. Limestone/marble a posteriori tools with exclusive percussive wear
Table 10.12. Limestone/marble a posteriori tools with both abrasive and percussive wear
Table 10.13. A posteriori limestone/marble miscellanea
Table 10.14. Limestone/marble non-a posteriori tools manufactured by grinding or chipping listed in four categories
Table 10.15. Limestone/marble non-a posteriori specimens produced by splitting
Table 10.16. Non-a posteriori limestone/marble miscellanea
Table 10.17. Used and unused hematite lumps
Table 11.1. Obsidian from Trench B1, correlated with main cultural phases
Table 11.2. The total number of obsidian samples analyzed with a p-XRF
Table 11.3. Inventory of each sample analyzed with the p-XRF
Table 14.1. Additional biometric measurements taken on Alepotrypa faunal material.
Table 14.2. Bird species from Chamber A
Table 14.3. Bird species from Late-Final Neolithic Chamber B
Table 14.4. Reptilian (chelonian) remains from Late-Final Neolithic Chamber B
Table 14.5. Postcranial data for neonatal vs post-neonatal mortality in sheep and goat (combined)
Table 14.6. Postcranial data for neonatal vs post-neonatal mortality in pigs
Table 14.7.	Postcranial data for neonatal vs post-neonatal mortality in cattle	Table 19.6.	Results of the analysis of wood charcoal samples from successive distinct layers in \(\Theta 14 \)
Table 14.8.	Mortality data for rarer species based on dental eruption and wear	Table 19.7.	Results of the analysis of wood charcoal samples from different locations and/or cultural phases of the interior Chamber Z
Table 14.9.	Male and female sexed pelves for sheep and goat	Table 19.8.	Results of the analysis of wood charcoal samples from different locations of the interior Chamber of Lakes
Table 14.10.	Frequencies of different fragmentation types for cattle, pig and sheep/goat (combined)	Table 19.9.	Diameter measurements of wood charcoal fragments that preserved the pith and bark
Table 15.1.	Radiogenic Sr isotope results for humans from Alepotrypa Cave	Table 20.1.	Probabilities associated with the classification of the Alepotrypa specimens to each of the modern comparative micromammal taxa pooled
Table 15.2.	Radiogenic Sr isotope results for fauna from Alepotrypa Cave	Table 20.2.	NISP for micromammals per chronological phase
Table 16.1.	Plant remains from Trench B1A	Table 20.3.	Reptile NISP per chronological phase
Table 16.2.	Plant remains from Trench \(\Theta 14 \)	Table 20.4.	Amphibian NISP per chronological phase
Table 17.1.	The shell assemblage: species representation in the Neolithic phases	Table 20.5.	Bird NISP per chronological phase
Table 17.2.	The fishbone assemblage: species representation in the Neolithic phases	Table 20.6.	Micromammal dentitions per chronological phase
Table 17.3.	Spatial distribution of invertebrate remains by families	Table 18.1.	Phytoliths: quantitative results
Table 17.4.	Spatial distribution of fish remains by families/class	Table 19.1.	Provenience and cultural correlation of the studied wood charcoal samples
Table 17.5.	Spatial distribution of modified shell specimens	Table 19.2.	Frequency of occurrence (ubiquity) of the taxa in the charcoal samples
Table 18.1.	Phytoliths: quantitative results	Table 19.3.	Charcoal results for the anterior part of the cave, Trenches B1 and B1a
Table 19.1.	Provenience and cultural correlation of the studied wood charcoal samples	Table 19.4.	Results of the analysis of wood charcoal samples from locations \(\Theta 10 \) and \(\Theta 9 \)
Table 19.2.	Frequency of occurrence (ubiquity) of the taxa in the charcoal samples	Table 19.5.	Results of the analysis of wood charcoal samples from successive hearth-and-dung layer and hearth-and-floor episodes in \(\Theta 14 \)
Table 19.6.	Results of the analysis of wood charcoal samples from successive distinct layers in \(\Theta 14 \)	Table 19.7.	Results of the analysis of wood charcoal samples from different locations and/or cultural phases of the interior Chamber Z
Table 19.8.	Results of the analysis of wood charcoal samples from different locations of the interior Chamber of Lakes	Table 19.9.	Diameter measurements of wood charcoal fragments that preserved the pith and bark
Table 20.1.	Probabilities associated with the classification of the Alepotrypa specimens to each of the modern comparative micromammal taxa pooled	Table 20.2.	NISP for micromammals per chronological phase
Table 20.3.	Reptile NISP per chronological phase	Table 20.4.	Amphibian NISP per chronological phase
Table 20.5.	Bird NISP per chronological phase	Table 20.6.	Micromammal dentitions per chronological phase
Table 20.7.	Dental measurements of micromammals	Table 20.8.	Breakage degrees for postcranial micromammal material
Table 20.9.	Breakage degrees from cranial micromammal material	Table 22.1.	Categories and quantities of material recovered from tract survey
Table 22.2.	Number of subunits and artefacts for intensively collected sites	Table 22.3.	Categories and quantities of material recovered from intensive site collection
List of colour plates

<table>
<thead>
<tr>
<th>Section I</th>
<th>Section II</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI 1</td>
<td>CPI I</td>
</tr>
<tr>
<td>Overview of Diros Bay</td>
<td>Ossuary I. Early Neolithic pottery</td>
</tr>
<tr>
<td>CPI 2</td>
<td>CPI II</td>
</tr>
<tr>
<td>Diros Bay</td>
<td>Late Neolithic pottery</td>
</tr>
<tr>
<td>CPI 3</td>
<td>CPI III</td>
</tr>
<tr>
<td>Map of the chambers of Alepotrypa Cave</td>
<td>Ossuary I. Final Neolithic pottery</td>
</tr>
<tr>
<td>CPI 4</td>
<td>CPI IV</td>
</tr>
<tr>
<td>Alepotrypa Cave, Petrocheilou profile</td>
<td>Ossuary II. Plain monochrome ware</td>
</tr>
<tr>
<td>CPI 5</td>
<td>CPI V</td>
</tr>
<tr>
<td>Alepotrypa Cave, Trench B1 west and south profiles</td>
<td>Θ 24 (Th 24) during excavation</td>
</tr>
<tr>
<td>CPI 6</td>
<td>CPI VI–X</td>
</tr>
<tr>
<td>Alepotrypa Cave, overview of Chamber B with Trench B1</td>
<td>Pottery from Niche 31, Z/22 (Th/22) and Z/24 (Th/24)</td>
</tr>
<tr>
<td>CPI 7</td>
<td>CPI VII</td>
</tr>
<tr>
<td>Alepotrypa Cave, North Sector</td>
<td>MN pattern-painted Urfirnis collar jar</td>
</tr>
<tr>
<td>CPI 8</td>
<td>CPI VIII</td>
</tr>
<tr>
<td>Alepotrypa Cave, overview of the Chamber of Lakes</td>
<td>Black-on-Red pottery</td>
</tr>
<tr>
<td>CPI 9</td>
<td>CPI IX</td>
</tr>
<tr>
<td>Alepotrypa Cave, overview of the Chamber of Lakes</td>
<td>Part of the patterned Urfirnis collar-jar</td>
</tr>
<tr>
<td>CPI 10</td>
<td>CPI X</td>
</tr>
<tr>
<td>Alepotrypa Cave, the Lake</td>
<td>Polychrome pottery</td>
</tr>
<tr>
<td>CPI 11</td>
<td>CPI XI</td>
</tr>
<tr>
<td>Example of the recording system of the finds from Alepotrypa Cave</td>
<td>Relief strips and bands on pottery</td>
</tr>
<tr>
<td>CPI 12</td>
<td>CPI XII</td>
</tr>
<tr>
<td>Area B2–B5.</td>
<td>Microphotographs of Alepotrypa Cave raw materials and fabric groups samples</td>
</tr>
<tr>
<td>CPI 13–19</td>
<td>CPI XIII</td>
</tr>
<tr>
<td>Photomicrographs of thin-section samples, and resin-impregnated slabs</td>
<td>Technological practices as depicted in thin section</td>
</tr>
<tr>
<td>CPI 20</td>
<td>CPI XIV</td>
</tr>
<tr>
<td>Stratigraphical sections of Trench B1, showing the location of micromorphological samples and radiocarbon dates</td>
<td>Stratigraphy I of Trench B1 (1971): the nine layers (S1–S9)</td>
</tr>
<tr>
<td>CPI 21</td>
<td>CPI XV</td>
</tr>
<tr>
<td>Trench B1</td>
<td>Siliceous raw materials at Alepotrypa Cave and white patinated flints</td>
</tr>
<tr>
<td>CPI 22</td>
<td>CPI XVI</td>
</tr>
<tr>
<td>Impressive rounded clay-lined pits in area B2–B5</td>
<td>Red deer proximal metacarpus sawn off from its shaft from Chamber A (Early Neolithic)</td>
</tr>
<tr>
<td>CPI 23</td>
<td>CPI XVII</td>
</tr>
<tr>
<td>Petrocheilou section</td>
<td>Bone pointed tools</td>
</tr>
<tr>
<td>CPI 24</td>
<td>CPI XVIII</td>
</tr>
<tr>
<td>Area Θ14 (Th 14)</td>
<td>Large pointed tools made of red deer metapodia</td>
</tr>
<tr>
<td>CPI 25</td>
<td>CPI XIX</td>
</tr>
<tr>
<td>Images of Chamber Z</td>
<td>Fox canine pendant from Chamber Z (Early-Final Neolithic)</td>
</tr>
<tr>
<td>CPI 26</td>
<td>CPI XX</td>
</tr>
<tr>
<td>The relatively long and narrow gallery separating Chambers D and E</td>
<td>Geological map of the Aegean</td>
</tr>
<tr>
<td>CPI 27–29</td>
<td>CPI XXI</td>
</tr>
<tr>
<td>Tables 4.1–4.3. Quantitative evolution pottery in Trench B1 through time</td>
<td>View of the Diros Bay – cave arrowed</td>
</tr>
<tr>
<td>CPI 30</td>
<td>CPI XXII</td>
</tr>
<tr>
<td>Geophysical map of Laconia with the location of Alepotrypa Cave in Diros Bay</td>
<td>Molar measurements of Apodemus sp.</td>
</tr>
<tr>
<td></td>
<td>CPI XXIII</td>
</tr>
<tr>
<td></td>
<td>Canonical variate analysis of the molar shape differences between mouse species</td>
</tr>
<tr>
<td></td>
<td>Palaeodietary reconstruction from carbon and nitrogen stable isotope analysis</td>
</tr>
<tr>
<td></td>
<td>CPI XXIV</td>
</tr>
<tr>
<td></td>
<td>Overview of the study region showing the entrance to Alepotrypa Cave</td>
</tr>
</tbody>
</table>
List of contributors

MEIGHAN BOYD
Department of Earth Sciences, Royal Holloway, University of London, UK.
Meighan.boyd@rhul.ac.uk

THOMAS CUCCHI

MICHAEL L. GALATY
Director, Museum of Anthropological Archaeology, and Anthropology, University of Michigan, Ann Arbor, MI, USA.
mgalaty@umich.edu

JULIA I. GIBLIN
Assistant Professor of Anthropology, Anthropology Program, Quinnipiac University, Hamden, CT, USA.
Julia.giblin@quinnipiac.edu

ANGELOS HADJIKOUMIS
Research Technician and Demonstrator in Zooarchaeology, Department of Archaeology, University of Sheffield, Minalloy House, 10–16 Regent Street, Sheffield, S1 3NJ, UK.
a.hadjikoumis@sheffield.ac.uk

KARIN HOLMGREN
Swedish University of Agricultural Sciences, Uppsala, Sweden.
karin.holmgren@slu.se

PANAGIOTIS KARKANAS
Director, Malcolm H. Wiener Laboratory for Archaeological Science, American School of Classical Studies Souidias 54, 106 76 Athens, Greece.
tkarkanas@ascsa.edu.gr

STELLA KATSAROU
Ephorate of Paleoanthropology and Speleology, Greek Ministry of Culture, 34B Ardittou St., 11636, Athens, Greece.
skatsarou@culture.gr

BARBARA KATSPANOU-MARGELI
Ephorate of Antiquities of Messinia Ventisi 22, 24100, Kalamata, Greece.
barkats@otenet.gr

GEORGIA KOURTESSI-PHILIPPAKIS
Associate Professor of Prehistoric Archaeology, Department of History and Archaeology, National and Kapodistrian University of Athens’ School of Philosophy, University Campus, Zografou, 157 84 Athens, Greece.
gkphil@arch.uoa.gr

WAYNE E. LEE
Dowd Distinguished Professor of History, University of North Carolina – Chapel Hill, Chapel Hill, NC, USA.
welee@email.unc.edu

EVI MARGARITIS
Assistant Professor, Science and Technology for Archaeology Research Center, The Cyprus Institute, 20 Kavafi Street, 2121 Nicosia, Cyprus.
evimargaritis@gmail.com

MÁRIA NTINOU
M.H. Wiener Laboratory for archaeological Science, American School of Classical Studies Souidias 54, 106 76 Athens, Greece. “PlantCult” ERC_CoG, Horizon 2020 Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
maria.ntinou@uv.es
List of contributors

ANASTASIA PAPATHANASIOU
Ephorate of Paleoanthropology and Speleology, Greek Ministry of Culture, 34B Arditto St., 11636, Athens, Greece.
anastasia.papathanasiou@gmail.com

KATERINA PAPAYIANNI
Malcolm H. Wiener Laboratory for Archaeological Science, American School of Classical Studies, Soudias 54, 106 76 Athens, Greece.
katerinapapayiannisa@gmail.com

WILLIAM A. PARKINSON
Curator of Anthropology, Field Museum of Natural History, Professor of Anthropology, University of Illinois at Chicago, Chicago, IL, USA.
wparkinson@fieldmuseum.org

ARETI PENTEDEKA
OREA Institute for Oriental and European Archaeology, Austrian Academy of Sciences, Hollandstrasse 11-13, 1020 Vienna, Austria & Laboratory of Prehistoric Archaeology, Department of Archaeology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
apente@hist.auth.gr; areti510@yahoo.co.uk

AIKATERINI (KATERINA) PSIMOGIANNOU
Department of Anthropology, University of Illinois at Chicago, USA.
apsimo2@uic.edu

DANIEL J. PULLEN
Professor and Chairman, Department of Classics, Florida State University, Tallahassee, FL, USA.
dpullen@fsu.edu

DANIEME J. RIEBE
Postdoctoral Fellow of Archaeological Chemistry
The Field Museum of Natural History
Chicago, IL, USA.
dribe@fieldmuseum.org

REBECCA M. SEIFRIED
Institute for Mediterranean Studies, Foundation for Research and Technology – Hellas, Rethymnon, Greece.
rmseifried@gmail.com

GEORGIA STRATOULI
Greek Ministry of Culture
Ephorate of Chalkidiki and Mount Athos
Plateia Ippodromiou 7, 546 21 Thessaloniki, Greece.
gstratouli@gmail.com

ANNA STROULIA
Adjunct Professor of Anthropology, Department of World Languages and Cultures, University of Southern Indiana, 8600 University Boulevard, Evansville, IN 47712, USA.
astroulia@usi.edu

TATIANA THEODOROPOULOU
Equipe de Protohistoire égéenne,
CNRS-UMR 7041 Archéologies et Sciences de l’Antiquité, Nanterre, France.
tatheod@hotmail.com

GEORGIA TSARTSIDOU
a. Ephorate of Paleoanthropology and Speleology, Greek Ministry of Culture, 34B Arditto St., 11636, Athens, Greece.
b. Malcolm H. Weiner Laboratory for Archaeological Science, ASCSA, Soudias 54, 106 76, Athens, Greece.
gtsartsidou@ymail.com

GEORGE VALIV
Ephorate of Paleoanthropology and Speleology, Greek Ministry of Culture, 34B Arditto St., 11636, Athens, Greece.
gvalvis2@gmail.com
Memories of Alepotrypa Cave, Diros

George Papathanassopoulos

In 1970, the Hellenic Minister of the Interior for the military dictatorship, Stylianos Pattakos, removed me from my position as the Ephor of Antiquities at Olympia. He argued that the opening of the irrigation canal of the dam of the Pinios River, which was to be inaugurated by the head of the military junta, Georgios Papadopoulos, was being delayed due to my extensive excavations in the city of Ancient Elis. The canal was designed to pass through that region. I was unceremoniously removed from my position – while on leave in Athens – and reassigned to the Ephorate of Sparta, where I took office on 25 March 1970.

While in my new position, my interest was attracted to two small marble female figurines of Neolithic date that were displayed in a small case on the wall of the Archaeological Museum of Sparta. These figurines had been found by the speleologist Anna Petrocheilou in Alepotrypa Cave at Diros. I was further intrigued by other artefacts in the back yard of the museum: there were four big baskets full of fragments of broken jars with exceptional relief decoration. These had also been found at Alepotrypa Cave by Anna Petrocheilou. I took photographs of the fragments and recorded them. In addition to these extraordinary findings, in the official correspondence files of the Ephorate of Sparta, I saw references and descriptions with photographs and drawings of ten wall carvings that also had been observed by Anna Petrocheilou in various parts of the same cave system.

Understandably, my interest was piqued. I immediately planned a visit to the place of origin – Alepotrypa Cave at Diros. When I arrived there, I found a group of people, organised by the Philips Company, performing the final testing for the Son et Lumière installation. The programme was being organised by the Greek Organization of Tourism (EOT) as part of the forthcoming touristic attractions at the cave.

As a result of my visit, I realised that all ten wall carvings were fake. They had been etched recently at various points throughout the cave, possibly by the same person that had previously produced ‘prehistoric centaurs’ on ‘ancient’ slate tiles and delivered them to the Museum of Volos, claiming them as originals.

I decided that I had to cancel the festive opening of Alepotrypa to tourism: the cave was full of archaeological material that had not been studied by the appropriate service.

Thus, after ten years of service at the National Archaeological Museum (1950–1960), followed by ten more at Ancient Olympia and after 1966 as Ephor of Antiquities. I began the third phase of my career as Ephor of Antiquities at Sparta where, from 1970 onwards, I was exclusively involved with the Neolithic Cave of Alepotrypa in Diros. When I entered Alepotrypa, knowing that the cave also had been used by Neolithic man, I could not help but feel strange – wondering about all the impressions and the feelings the cave had aroused in those people that had used it long ago, during the Neolithic period. Walking under the artificial light through the long corridor that winds to the back of the cave, to the lake with the potable water, I imagined a Neolithic man with just a torch in his hand following the same path I was taking. I thought that, just like me, he would have stopped – out of both respect and fear – at the point where the two corridors meet: where the higher level of Hall B descends to the significantly lower Ossuary of the Neolithic community. Then, continuing along the same path, he would have passed the cobbled ‘Niche of the Amphora’ (Niche 14) and entered Hall Z, where two neighbouring niches opened (Niches Z.22 and K.31) en route to the great hall of the cave, the Chamber of the Lakes.

The massive size of the cave and the incredible number of ceramic fragments found on the soil surface indicated to me that it was vital that systematic archaeological
research should be conducted here. So I asked for the collaboration of my colleague and friend Dimitris Theocharis, who was eminently skilled in the investigation of the Neolithic Age. Unfortunately, however, this was not possible due to serious obligations he had in Thessaly. So our collaboration was limited to just one visit at the very start of the archaeological investigations in the cave.

The work began on 15 July 1970, with my colleague George Steinhauer, Curator of the Antiquities Ephorate of Sparta, the archaeologist Sophia Eleftheriadou and the experienced excavator Menelaus Paleologos of the Museum of Sparta.

At the beginning of the excavations in Alepotrypa, Spyridon Marinatos, who at the time was General Inspector, came to Alepotrypa accompanied by the French geologist Jean Marie Lambert of the mining operations at Laurion, with his wife Nicole. Marinatos assigned the study and further excavation of Ossuary II to them. Until then, the investigation had been carried out by myself and the biological anthropologist Aris Poulianos, who had also been brought in by Marinatos. The research started with the opening of trial trench B1 at the centre of Chamber B, where the greatest thickness of the undisturbed Neolithic human remains were, impressively, still visible.

Meanwhile, excavation across the whole of the Northern Sector of Chamber B had revealed the surface layer of the fill. As a result, we were able to locate in situ significant finds and furnishings established by the users of the cave in the later Neolithic Period. These included two deep circular storage pits lined with clay, similar to the one already revealed by Anna Petrocheilou at a higher level of the same chamber. One of these had a stone-lined rim, as well as a large hearth, and two intact ceramic vessels found in situ.

During the course of the excavation, I first lived in a small tent under the portico set up in front of the entrance of the cave; later I had the use of a camper, a kind courtesy of the EOT.

Amongst the general difficulties and vicissitudes of life that the excavation team in Diros had to endure was the lack of drinking water. We resorted to drinking the brackish water pumped from the cave’s own lake. As for food, originally we had a roughly installed kitchen near the Chapel of St. Saviour. Later on, when the Ministry of Tourism’s restaurant, located near the beach, began its service, we were able to eat there.

All the above-mentioned difficulties were rendered tolerable, however, by the natural beauty of the Gulf of Diros, with Mount Taygetos in the background.

For the safe daily transport of the excavation finds from the cave to the Museum of Sparta, upon my request, a car and a driver from the military unit of Sparta had been assigned to assist us. John Orfanakos, the Mayor of Pyrgos Dirou, Takis Kilakos, who later became Mayor, and local entrepreneurs Koulis Kolokouris and Stavros Tsoukalas all were highly supportive of the project.

The examination of the top layer of the Northern Sector of Chamber B gave a good first impression of the conditions, lifestyle, and organisation of those Neolithic people that had used the cave. It seems that the inhabitants of the area and the cave would choose appropriate natural niches in its boundaries as places to reside; they opened circular pits with clay-lined walls and stone-lined rims – invariably of flat slabs of stones – to act as covers, presumably for the food stored therein.

This clear picture of their organized daily routine, particularly evident in the Northern Sector of Hall B and in Niche 15 of Chamber D (with its amphora in situ), spurred me on to pursue a general exploration of Alepotrypa. For this reason, I approached the pertinent Ministry Department and several other sponsoring bodies; I was successful in raising the finances for the project through the EOT and the Psycha Institution (1970–1971).

Unfortunately, the project was stopped in its tracks when I was held in Korydalos prison and suffered at the hands of the Junta for my political views. Even after my release, my persecution continued: first I became a persona non grata and then I was transferred to Agios Nikolaos in Crete, where I was eventually officially dismissed from my duties by a telegraph-message from the Junta.

After the regime change in 1974, I was legally returned to active service. First I served at the headquarters of the Ministry of Culture and then I was assigned to head up the newly-founded Department of Underwater Antiquities, a unit whose creation I had vigorously proposed. Here I served until January 1987, when I officially retired.

The period from 1970 to 1987 was a period of limited archaeological research in Diros but, over time, there was some significant development in the infrastructure. The existing portico was transformed into conservation laboratories, workshops, and a hostel where the excavation crew could live. All the necessities were provided: a kitchen, bathrooms, a study area, a conservation area, and a large storage room which later (1992) became the Diros Neolithic Museum. All this was successfully achieved with the help of the Association of Friends of the Neolithic Museum of Diros: in particular with the assistance of Carmen and Basilis Konstantakopoulos and the Greek-American couple Angelos and Eleni Tsakopoulos.

It must be emphasized that the project would never have succeeded without the dedication – well beyond their official obligations and responsibilities – of the scientific and technical staff who served and continue to do so from 1970 to the present day.

The excavation project at Alepotrypa Cave has led to more and more significant finds and continues to
hold my interest. In 1988 I broached the possibility of acquiring more substantial funding for additional research and development with the Minister of Culture, Melina Mercouri. By decision of the Minister, a programme for the project was agreed to with the Ministry of Culture, Archaeological Receipts Fund (TAPA) and the Municipality of Diros. The project was funded by grants from the TAPA. In this way, it became possible to recruit archaeologists, designers, administrators, and technical personnel.

The research included the continuation of the excavation in Trench B1: this yielded numerous finds – undecorated and painted pottery, rich skeletal material, figurines, and stone and bone tools. The progress was such that a depth of 5 m of excavation was reached: the stratigraphy of B1 revealed that Neolithic man was using Alepotrypa from c. 6,000 BC to 3,200 cal C.

In addition to trench B1, I began excavating in Niche Z22, just before the entrance to the Great Hall of the Lakes. In this area, numerous colourfully painted, broken, pots were revealed: this was an unexpectedly rich and unique cultural treasure. Apart from the archaeological value of these finds, the chance to see and handle them gave me – and even now continues to give me – joy beyond words, a deep satisfaction in that I was fortunate to have discovered them, and so to have ensured their preservation, promotion, and study.

With the Planning Agreement in place and the support of the Association of Friends of the Neolithic Museum of Diros, the excavation and planning work in Diros has been decisively promoted and further advanced by the Archaeological Receipts Fund of the Ministry of Culture. During the summer of 2006 it finally became possible to allow the public to visit Alepotrypa: but only for 6 months as the funding soon came to an end.

However, I persevered in my efforts to advance the scientific work. In 2010, following a ministerial decision, I secured a 5-year programme, with the collaboration of Greek and US scientists and funding from the Institute for Aegean Prehistory, the Wiener-Laboratory, the Wenner-Gren Foundation for Anthropological Research, the National Geographic Society, and the Field Museum of Natural History.

After four decades, since 1970, Alepotrypa is now ranked as one of the most important archaeological sites of Neolithic culture in Europe. The book the site inspired me to write – Neolithic Diros – is included as teaching material in the Philosophical Schools of the Universities of Athens and Thessaloniki. I also feel delighted that my colleagues – Greek and foreign scientists of various disciplines – are busy with the study and publication of material acquired from Alepotrypa Cave.

I dream of the development of the infrastructure that Alepotrypa deserves and the building of a large museum nearby that will house and display all the major findings of the excavations. Thus, visitors will be best informed about the culturally sophisticated practices of Neolithic man on the southernmost tip of mainland Greece.
Figure 0.1. Alepotrypa Cave floorplan and archaeological loci. Important note: TH (from Thesi) is the equivalent of Θ (Θέση = locus). Th can also be substituted for the chamber designation letter (i.e. Th/20 is the same as Θ/20 or Z/20). Certain loci may also bear specific names. Furthermore, Niche 31 is the same as LA1 or Th/31 or Θ/31.